Equations Project!!

$\mathrm{x}-\mathrm{I}_{2}$
EThis project is about equations. Equation-a statement that the values of two mathematical expressions are equal (indicated by the sign =).

1st. we use $4 x$. We divide $4 x$ (because a number right next to a variable is multiplying) $4 \div 4=x$.

2nd. multiply \% x ¼. But first KCF (Keep it, Change it, Flip it,).

So $\% \times 4 / 1=\quad x=8 / 5$

subtract $2 / 5$ from 1/12.

Then divide $1 / 3$ from $1 / 12$ and you should get the awnser.
$1 / 12 x+2 / 5=1 / 3 x$

$x+56=5-x$

1)Subtract 5 from both sides
2)then add x to x to get all the variables to the left
3)last you divide 51 by $2 x$
4)then you should get your answer
$X=25.5$

THE GRAND GHALLENGEEQUATIONS

$B_{i} A_{i}=E_{i} A_{i}+\rho_{i} \sum_{j} B 9(4-3)=6^{* 7 X}-\frac{\partial \vec{B}}{\partial t} \quad \vec{F}=m \vec{a}+\frac{d m}{d t} \vec{v}$

1) you distributive 9 to 4 and 35$\left.)^{J}\right) d \mathbf{d S}$

$$
(\partial S)_{\mathrm{v}} \quad(\partial \mathrm{~V})_{\mathrm{s}}
$$

2)then you $36-27$ then you get $9=\frac{\partial u}{\partial t} \quad \nabla \times \overrightarrow{\mathbf{H}}=\frac{\partial \overrightarrow{\mathrm{D}}}{\partial \mathrm{t}}+\overrightarrow{\mathrm{J}}$

$$
\mathrm{F}_{j}=\sum \mathrm{f}_{k} \mathrm{e}^{2 \pi ग J} / \mathrm{N}
$$

3)then subtract 6 from $9=\mathbf{r} \mathbf{p}_{\mathbf{n}}\left(1-\mathbf{p}_{\mathbf{n}}\right)$

$$
h^{2}-2,3 \text { then vou chould oot vh aur ancuat) }
$$

4)then divide 7 by 3 then you should get your answer

$$
\mathrm{Z}=\sum_{\mathrm{j}} \mathrm{~g}_{\mathrm{j}} \mathrm{e}^{-\mathrm{E}_{\mathrm{j}} / k T}
$$

$$
\nabla \cdot \vec{B}=0 \quad P(t)=\frac{\sum_{i} W_{i} B_{i}(t) P_{i}}{\sum_{i} W_{i} B_{i}(t)}
$$

$$
-\nabla^{2} \mathbf{u}+\lambda \mathbf{u}=\mathbf{f}
$$

$\frac{\partial \overrightarrow{\mathrm{u}}}{\partial \mathrm{t}}+(\overrightarrow{\mathrm{u}} \cdot \nabla) \overrightarrow{\mathbf{u}}=-\frac{1}{\rho} \nabla \mathrm{p}+\gamma \nabla^{2} \overrightarrow{\mathbf{u}}+\frac{1}{\rho} \overrightarrow{\mathrm{~F}} \quad \frac{\partial^{2} \mathbf{u}}{\partial \mathrm{x}^{2}}+\frac{\partial^{2} \mathbf{u}}{\partial \mathrm{y}^{2}}+\frac{\partial^{2} \mathbf{u}}{\partial \mathrm{z}^{2}}=\mathbf{f}$

- NEWTON'S EQUATIONS - SCHROEDINEEREOIIATION GTIME DEPENDENTD - NAVIER-STOKES EQUATION -- POISSON EQUATION•HEAT EQU, - MAXELL'S EQUATIONS -3 reDOQtInGPN•DISCRETE FOURIER TRANSFORM: - COMBINED 1ST AND 2ND LAVI SAN DIEGO SUPERCOMPUTER CENTER A National Laboratory for Computational Science and Engineering

Equations $7 n+8=$

